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Finite difference approximations for ofo’x which satisfy a summation
by parts rule, have been evaluated, using different types of norms, H, by
implementation in the symbolic language Mapfe. in the simpler
diagonal norm, H=diag(Aq. Ay, .. Ay, 4. 1, ...} with all A, positive,
difference operators accurate of order r<4 at the boundary and
accurate of order 27 in the interior have been evaluated. However, it
was found that the difference operators form multi-parameter families
of difference operators when rz=3. In the genetal full norm,
H=diag(H, 1), with HeR"*"*"*1 being SPD, and | the identity
matrix, difference operators accurate or order r =3, b at the boundary
and accurate of order T + 1 in the interior have been computed. As in the
diagonal norm case we obtain a muitiparameter family of operators
when 72 3. Finally, a three-parameter family of difference approxima-
tions with accuracy three at and near the boundary and with accuracy
four in the interior have been cumputed using restricted full norms.
Here, H =diag(H, /), with HeR"+2"+2 haing SPD. and H{:. 1) =
H(1,:)T=ke,, where  is a constant and e, is the vector with the first
efement being one and the rast zero. Regardless of which norm we use,
the parameters can be determined such that the bandwidth of the
difference operators are minimized. This is of interest when parallel
computers are used, since the bandwidth determines the memory
requirement and also the amount of computational work. © 1994
Academic Press, Inc.

1. INTRODUCTION

To make the presentation self-contained, we begin by
presenting the theory in [1, 41. This makes it easier for the
reader to understand the different properties of the dif-
ference approximations presented in Section 3 and beyond.
Consider a real system of partial differential equations [1]

du_ , 8
ar T\ M)

in a cylindrical domain {2x0<:1<ow} with boundary
{82 x0<t<w]. Here, x=(x", .., x)T denotes a point
in the real Euclidean space R°, = (¢, ..., 2"} is a vector
function and P is a differential operator with matrix
coefficients. For 1 =0, initial values are given,

(1)

ulx,0)=f(x), xeQ,

(2)

581/110/1-4

and on the boundary, homogeneous boundary conditions,

d
B(x,—)u=0, xed, =0, (3)
ax

are prescribed. Here, B denotes a differential operator
whose coefficients depend on x but not on ¢, Let

(, w) = |lul®

(1, 0) = |

2

u*p dx,

(4)

denote the usual £,-scalar product and norm. Assume that
the operator P is semibounded, ie., there is a dense set
S Ly(£2) of functions w satisfying the boundary conditions
(3) such that

{w, Pw)+ (Pw, w) <0, weS. (5}

As is well known, (5) implies an energy estimate for those
solutions of {1)-(3) which, for every fixed #, belong to §

because
i, 5 Ou du
o full = = (li, ‘5) + (5;, H)

= (u, Pu)+ (Pu, u) <0. (6)

2. SEMIBOUNDED DIFFERENCE APPROXIMATIONS
FOR d/dx

Consider the half-line {0<x<o} and divide it into
intervals of length 2> 0 [4]. Let x,=vh, v=0, 1, .., denote
the grid peints and v, = ¢(x,} be real scalar grid functions
with 3% o |v,|? < co. Define a discrete scalar product and
norm by

(u,v)p= !, HY'S 0+ 3 uv b

r—1 o
S hguph+ Y ueh,
0

L=

el = (e, ).

(7)

v=r
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Here u’= (u,, #,, .. 4, ;)" denotes the vector formed with
the first r values of # and H= H" >0 is a positive definite
symmetric {r x r)-matrix. We want to construct difference
approximations Q to dfdx such that

(u, Qu)y = —(Qu, v}, — uo by, Vu, v. (8)
This is a discretisation of the integration by parts formula
(6). An equivalent formulation is given in the following
lemma.

Lemma 2.1, The relation (8) is equivalent with
(u, Qu)= —4ud,  Vu. 9)
Proof.  (u, v),= (v, u}, shows that (8) implies (9). If (9)

holds then
(w+v, Qlu+v))y=—(Q(u+v), u+v), — (ug+ v)*
and (8) follows easily using (9) for vand &. |

Consider u as an infinite column vector u={u,, uy, ..)"
and therefore represent @ as an infinite matrix. Assume that
@ has the form

hQ=(_QC‘fT %1). (10)
Here
oo Ho1 Gor—1
n= ,
G0 Gr—11 " Groar—a
gor * Gom O
Q.= . B
G-ty " Groim O
C, 0 -
c=(c o )
where
o 0 0
o,_, a« O 0
C=| : - B
¢
o, U1 &
0 a, 0
-y 0 o a, O
b= —a, —a, 0 oy o, ’
0 .
: —a, -, 0 oy -2, 0 -

(11}

where D is an antisymmetric band matrix and C; is a
(r —s) x 5 matrix only with zeros. The part, #~'(-CTD),
represents the operator away from the boundary.

2.1. The Accuracy Conditions

An operator @ is an approximation of dfdx accurate of
order t if

dv !
Qu=—+ O(h),

(12)
where v is a real scalar grid function. It is sufficient to con-
sider polynomials, because using 1+ 1 points, a polynomial
of degree < # can be interpolated. Then (12) gives us

dm
th—f%-:(), m=0,1, .1 (13)
Let # =1, and denote by
I‘j
e, 1 (r=1y
1 (14)

OJ
f= ]}-)’ J=0,1,2, ..

the discretisation of {(x —r)/, with the conventions 0°=1,
e_,=0.

The following aproximations of increasing order of
accuracy 2s of the derivative are used:

a Ky
L pii =
x D= h) Z A, Dy(vh),

v=1
e St s
YT (s —v)

(15)
=12, ..

These formulae use the coordinates of 25+ 1 symmetric
centered points with antisymmetric coefficients and so they
obtain the highest accuracy possible with this number of
equidistant points. The coefficient of the vth right-hand
term i3

—-2(—1)"s!
= 27 1
oov(s+v)(s—v)V (16)
and the corresponding left-hand term is a_,= —a,. The

following lemma characterizes the accuracy of Q in the
following lemma.
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LEMMA 2.2, The operator h—'(—C7 D) approximates
didx of order 25 >0 if and only if

n=0Q,

{17)

n=1,2,.,5—1,

Proof. Equation {12) gives us
A {=CTD)u
du"!
=_d;-+ @(hzs)a u[] = (ure ur+1’ "')’
=h! Z (X, _ 1 i)
k= —s
=d”(xr.-_l+f)+(o(h2*), i=1,..,s.
dx

Then by using Taylors series for functions of one variable,

o A Y
f{).‘)= Z f(.f](a) (_{C_.ﬁ.)_’
j=0 J!
one obtains
o . xd
u(x,._]+]+k)= Z u(ﬂ(xr—1+f) '-—f‘
j=0 I

This expression and the fact that x, = vk give the following
relation:

2. o .
RUY a0, ) Yk
=0 Jreas
=u'(x,_,.,)+ OH>), I=1,2,..,s.
Thus
> =0, j=0,
k= —s
8
Z akk: y J=11
k= —%
Y oaki=0,  j=2,..s
k= —s5
Since ®_, = —u, these equations can be rewritten as
z ak=0, j=0,
k=1
Y k=1, j=1, (18)
k=1
Y oa{kl—(—k)}=0, j=2..s

k=1

The third equation is clearly zero for j even and the
condition
j= 33 5’ .

Y o/ =0, 25— 1,
k=1

must be valid and the proof is completed. §

The part, £~ {0, Q.), represents the modification of Q
at the boundary points. The accuracy conditions which Q
has to fulfill are given in Lemma 2.3.

LEMMA 2.3. The operator h™'(Q,,0,) approximates
didx with order of accuracy t ai the points x,,
v=01, ., r—1,if and only if

jei1=0ne+Qnf, j=0,1, ., 1 (19

Prooj Equations (13) and (14) for the polynomial
(x—r), with j=0, 1, .., 1, give the expression
Qw;= jw;_,, i=0,1,..,1
Thus by (10)
Que;+ Qi fi=je_ 1,
~CTe;+ Df;= jf;_ 1,

j:07 15 e Ty
j=0,1,..,1,

and this concludes the proof. ||

2.2, Necessary and Sufficient Conditions for O

Necessary and sufficient conditions will be derived such
that Q satisfies condition (9).

THEOREM 2.1, The operator Q satisfies the relation (9) if
and only if it can be written as

H™'B H'C
hQ =
o-(" 7 " ,6). (20)
where B is a (r x ry-matrix of the form
B=8,+85, (21)
with
-3 0 0
P I °1.
0 0
0 bo, bo,—4
—bg, 0 by by
B,= . . :
. b2y
_bﬂr—l lbr—k2r—1 0

hence B,= - B].
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Progf. Write (9) in the form
_%“(2)= ', HQ11”1> + HQn“H)
_ <ull, CTHI> + <HII, Du“)
where u' = {ug, ..., 4,_;)7, t" =(u,, ..)T. D is an antisym-

metric matrix and therefore {u", Du'" ) = 0. Furthermore, if
u'"" =0 then the above relation becomes

L 1 I
—qug={u', HQqu').

Therefore HQ,, = B, must have the form (21). Then the
above reiation is equivalent with

0= <HI, HQ]zuH>*" <ulI, CTuI>
=<, (HQ,— Cyu'")

for all vectors «', u". This is only possibie if Q,,=H ~'C
and the theorem is proved. §

To obtain the coeflicients of @ at the boundary points, the
elements of B, have to be evaluated. This is done by writing
(19) as

B:’.e': g
i 7 (22)
=01 .,

g,=jHe; ,—Be;—Cf,

The equation above, for the antisymmetric matrix B, can
be written as a system of linear equations

4= ¥is =0, 1,
(=¥ 2=r)y - - {(—1y Q Q.-
—(=r) 0 e - 0 2-r)
0 (-0 - 0  —(1-r¥ 0
A= .
0 e 0 (=Y 0
0 0
(=1} 0 -
0 Q
0 (=2 (-1 0
—(—3¥ 0 (=1y
0 —(1—r) 0 - 0 (=3 —(=2

(23)

Where b=—" (bﬂll' bOZ’ ey bﬂr— 1 b]z, ey b,,zr_ 1) Contains [he
r{r— 1)/2 unknown elements of B,; A;is the {r x r(r — 1)/2)-
coefficient matrix, and

(24)

}’J':gj—%(—f)j, i=0 .,

The term 3( —r}’ stems from B,(1, 1), which is known ( —1).

These T + | equations can be written as

Gh=1z, (25)

where G=[AyA4,--- 4,17 and z=[yoy, -+ y.]1" This is

an overdetermined system of {z+1)r equations with
r(r — 1}/2 unknown elements.

By assumption &, is antisymmetric. Therefore the

following compatibility conditions for the system {22) have
to be satisfied:

(e, gi»+ {&p g:>=1{_e;, BZej> + <‘3j, B,e;»

=0, 0<i, j<t  (26)

If these conditions hold, the system (22) can be resolved as
it is expressed in Lemma 2.4.

LEMMA 2.4,  Assume that r 2 1+ | and that the relations
(26) hold. Then there is an antisymmerric matrix B, such that
(22) is valid.

2.3. Derfpation of the Norm

To obtain the elements of the norm matrix H, the
relations (26) are used. By (22) this can also be written as

e, Hej75>+i<ej, He,_ >

=M,,, 0<i j<r1, (27)
where _
Mi,j‘_: 2e, Bl‘-’)) +{e;, Cf}> + <ej$ Criv.
LEMMA 2.5. M, ; can be written as

M, = _(_r.)!+j+']i,i+js

5 v—1
Jie= 2 fx( Yy, u""'(u—vl"+u’(#ﬂ)""'), (28)
=1

n=0

c=i+j= L
Proof. These scalar products can be calculated as

Cor Byey=4(= 1)+ r)
r—1

Y wWv—p)

=0

Cen Gy =(—i) 3 a,

v=1

Thus, by using the above expression in (27} and by
introducing ¢ = i + J, the proof is concluded. §

If one introduces the notation p, ;= {¢;, He,» then (27)
can be written

Jpioatipi =M, (29}
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Here p, _,=p_,;=0 by the convention for ¢_, and
p: ;= p;,; by the symmetry of H. This system in the p, ; is
very simple to resolve, and from the solution the elements of
H are obtained. The matrix # has to be positive definite in
order to be used as norm matrix. Lemma 2.9 below states
the equivalence between this condition and the positive
definiteness of the matrix defined by the g, ;. Conditions on
M ; will be derived in Section 2.4 such that the system {29)
has a solution (these conditions are resumed in Lemma 2.6)
and therefore for the compatibility of (22)

From (29) and (28} with i = j= 0 the following condition
is obtained:

0=0pg, _;+0pp _,=Mpo=—~1+2 Z AV,

v=1

£
Y av=4

v=1

(30)

Therefore, by Lemma 2.2 the approximation at the points
has to be at least second-order accurate. But (29} implies
M, ;=jp. ;1 +ip,;— =M, This condition is satisfied by
(28). Therefore {29) has to be considered only for i < j. For
i=0 and from (29} the following condition is obtained:

1
p(),j*lz}TMO,jQ jzisza‘":t' (31)
1fi>0then p, ;,_ can be explicitly calculated:
1 i
pi,j—1=}Mf,j—}pf—l.j- (32}

If i—1>0 and j<r then (32) can be used to replace
Py BY pi_aje and obtain p, o =(/M, ;-
G+ UYMW~ 1) jU+ 1)) piog jo 1. There-
fore by recursion (29) can then be written in the form

Pij=Pii pi1=p_1,;=0
oy
pl"f—l_j (&) J(j+1) !'—I,j+1+

Lii=1) - (i—a 1)

+( ) j(j+l)(f+05) [N e
_1 ®+ '

+( ) j(j+I)---(j_}_o:)p’—a—).j-ﬁ-qs
O<igjsr, 33)

where 2 =min{i — 1, T — /).

If i—t<t—j, ie, i+ <1, then a=7i—1 and the
following condition is obtained:

(34)

1
Pica—tjia=Poisj—t ='i_+_jM0,i+ i

Thus (31) and (33) imply that p, ;_, is completely deter-
mined by the M, ;, provided i+ j<t. Il i+ j>1 then
a=1—jand
Pica—1jra=Pivj—1-n:= Py v=i+j—1—1 (35}
There are no further relations which p, ; need to satisfy. If
Eq. (33)isused with i=n, j=nand i=n—1, j=n-+1, for
n <1, representations for p,,,_, and p,_, , are obtained,
but by (28), p,. .1 =pu_1, i+ j=2n> 1, then by (35),
these two relations determine p, ., y=2r--1—1, and no
conditions for the Af, ; result. In this case, if 7 is odd, v will
be even, but if 7 is even, v will be odd. If Eq. (33} is used
withi+j=2n+1>1,1<n<t—land i+ j=2n-1>7,
2<n<t, then it can be shown that no conditions for the
remaining g, , result. If i + j=2n <7, then from (33) and
(34} the following conditions on M, ; are cbtained:

1 n

M T
nin—1)

aln+ 1)+ 2)

o Alr—=1)--.1

- n(n+1)---2nM0‘2"

1
n+1

n—ln+1

Mn—»2.n+‘2r_ T

+

M:n~1,n+1

=pn.n—l=pn—l,n=
-1
(n+1)n+2)

(n—1}---1
(n+1)in+2)--.2n

n—2.n+2+

l)rr-—l

+{— M,

This relation can also be written as

1 1

i;; !n,n“n_’_an—l_rH-l
(n—1)
Yt Dlng 2y Mmrer2T o
{n—=1}---1
L
+[ ) (n+1)--02n G, 2n
=0, n=12, .. with 2r<1. (36)

Thus, the following lemma is given.
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LEMMA 2.6. The system (29) has a solution if and only if
the difference approximation in the is at least second-order
accurate and if the M, ; satisfy the relations (36).

The sought conditions of compatibility for the system
{29) will be obtained in terms of accuracy conditions which
the chosen scheme has to fulfill. In Section 2.4 it is shown
that condition {36} on M, ; implies that

5
z l.xv‘},2.n+1__=0,

v=1

Therefore, from Lemmas 2.6 and 2.2, the following lemma is
obtained.

Lemma 2.7.  The system (29} has a solution if and only if

¥ L
2n41 22

SR =
L 4 {0,

v=1

n=90,
n=1,2 .,2n<r,

Le., if and only if the approximation is accurate to order t + 1
if 1 is odd.

If the system has a solution when the p; , are determined
for 0 </, j < 1 if one specifies those p, ,, v=0, 1, ..., 7, which
are not determined by the system. They can be used to
define a symmetric matrix

Poo  Poi © Pox
R. = P(‘},l Py o p?‘r ==R;r.
Por Pi1c " pt,t

The parameters p, . should be chosen so as to obtain a
positive definite R,. The following lemma can be used.

Lemma 2.8, If

Po.0 Po Po.z--1
R,_,= p(:).l P11 Pl.?*i =R?f1
Poz-1 Prz—-1 " Prot1—-1

is positive definite then one can choose p. . such that also
R, >0 independently of the values of p, ., v=0,1, ., 11

Proof. The proof is obtained by developing the determi-
nant of R, by the elements of the iast row and balancing
with the value of p,.. Note that system (29} does not
dependong. .. §

Now a positive definite (r x r)-matrix A has to be
determined such that
<e,-, Hej> =L (37)

In fact the following lemma holds.

LemMma 2.9. If vzt 41 and the matrix R, is positive
definite then there are H= H " >0 such that (37) holds. In
particular if r=1+ 1 then H is uniguely defined by

ETHE=R_, E=(ey, .. {38)

2] er—l)'

In this case the norm is going to be referred to as a full
norm and will have the form

Boo +-
(39)

In stability analysis of first-order systems it is essential that
the matrix has the form

0 lhrﬁ-l,l ) hrfl,rk]

If we set ¥ = v + 2 the corresponding norm will be referred to
as a restricted full norm; see also [2]. Then the following
lemma holds.

LemMa 2.10.  If R_is positive definite then one can choose
H in the form (40) such that (37) holds. In general one has to
takerz1+ 2.

Proof. Lete;=&+&, where

A
!

r}'
q=-0'l 7|,
0
(r—1y
g=(-nif
17

Equation (37) is equivalent to

Piy= <€ H1éj>=Pf,j‘)~0(—”i+j"j+j- (41)

If R, is positive definite then the matrix R, formed by the 3, ,
is also positive definite, provided 4, is chosen sufficiently
small. §

The main result will now be proved,
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THEOREM 2.2. For every T+ 1=12s5, 5s=1,2, .., there is
an 1 of the form (40) and a scalar product of the form (7) and
an approximation Q of d/dx which is accurate to order 1 for
x=x,v=0,1,2, ., r—1, and accurate to order 1+ 1 for
X=2Xx,, Y=, such that (8) holds.

Proof. It is sufficient to show that the matrix R, can be
made such that R_>0 il r is chosen sufficiently large. The
g, ; are the solutions of the system (29). It can be split into
two parts, p, ;= p, ;+ §, ;, where j , is the solution of

JBe i = (1)
0<i, j<1, i+j=0 (42)
Proi=Poy=0 D= hu
and
Bijortibiaor=Jiep  O<h o j<n i+7>0
Boi=F_1;=0,  fi=f. 3)

By Lemma 2.11, in Section 2.4, the systemn (42) has a
solution

(__1}£+jri+j+l

Li= s 0-<._3,
! i+j+1

The matrix formed by the 5, , can be written as

r r2 r1:+l
- -5 (—1)
741
I e
2 3 1+2 |=DGD,
( 1)1 rt+1 r21+]
T+1 2t+1
where
1 0 0
O —r 0O . 0
0o 2 0 0
D=r'72 ) ;
0
0 0 {(-1)yr
and
1
q 1 1
2 T+ 1
1 1 1 1
G= 5 3 4 +2

[y
—
—

B 2141

is the well-known Hilbert matrix which is proved, in
Section 2.5, to be positive definite. Also, the eigenvalues of
DGD are of the order r and therefore the matrix DG D will
dominate the matrix formed by the solution of §; ; of the
system (43). Thus, for r sufficiently large, the matrix R, > 0,
which proves the theorem, |

ExampLE 1. For t=3 the approximation must be
fourth-order accurate in the interior. Choose 5 =2, , = 2,
®,= —15. A simple calculation shows that the p,; with

0 < i< jare given by

Poo=Mq,, Po1=3My5,
Po,z=%Mo.ae P0.3=M1,3“%Mz,z
P1,1:%M1,2_éM0.3, P1‘2=§M2,z,
P1,3=%M2,3—%P2.2s Pz.axéMz,a

No further relations have to be satisfied. Therefore p, 5, g1 3
can be chosen arbitrarily and R, can be made such that
R, >0, provided

(Po,o pO,l)=<M0.l
Por P %Mo,z

From (28) expressions for the M, ; are obtained:

M
Lap O]ZM )>0.
2,27 5440,3

Moo My, My, Mg,
My, M;; M,
M,, M,
M,
0 r-%  —r4t r?
| rHs 7 s
N —rt -t =
—rt4
Therefore,
] 1 - 1
M, EMo,z ~ r—i 5 +1_2
1 1 1 =1 1
EMo,z EM1,2“6M0,3 > +‘]§ 3"3

which is positive definite for r = 2. H is chosen in the form
(40) and r is set to r=1-+2. Then for every choice of 4,,
02,2, P33 H is uniquely determined. (The only restriction on
Aos P22 P33 is that R be positive definite.) After having
determined H one can obtain B, from the system (25).

2.4. Interior Accuracy Conditions

In this section the sought conditions of compatibility for
the system (29) are derived. These conditions are expressed



54 BO STRAND

in terms of accuracy conditions which the chosen scheme in
the intertor has to fulfill. For the special case when H is a
diagonal norm it can be shown that J, ,, defined in Eq. (28),
depends only on 7+ j, which is done in Section 2.5.

By introducing the diagonal matrix

Ag 0 0
0 4 0 0
A= ’ : , {44)
: . 0
0 - 0 A,

and then by expanding Eq. {27), the following expression is
obtained

r—1
Jlep Ae, > =7 % Afr—vytiTl{—1)yti!
v=0

and

r—1

G+ Y A=y =M, (45)
v=0

This is the left-hand side of (27), and it is clear that this
expression only depends on ¢ =i+ j. Therefore the same
must be true for the right-hand side, ie., J,, in Eq. (28)
depends only on ¢. Then the following lemma can be given.

LemMa 211, If the M, ; depend only on i+ j, ie.,

Mi.j=Ri+js Po=0,

then the system (29) has the solution

Pioi=p_1 ;=0

R'+j+1
=t 0<i, ESA i+ j< 2t
Pi; i+j+1 IS /

Proof. Introduce the above expression for p,; into
(29). 1

A consequence of this lemma is that if
Mn,nzMn—l.n+1 = e =M0,2n=R2n

then the relation (36) must hold, ie.,

11 -1
2n on+l (n+1D)in+2)
(n—1)---1
_qyp
=T T
=0, n=12 .., with 2r<t (46)

The M ; are expressed in terms of J; , in formula (28). These
in turn can be written as functions of sums of type
>, v™ By introducing (28) into (36 onc obtains

1 1 (n—1)

n n,ZH_mJn—ljn_*_mJnlen‘
" {(n—1).--1 -
+( 1) (n_*_l)“'szD.Zn_( F)

11 L =117
X[Z*FHJF"‘*(‘l) I }—0-

The last term is equal to zero by (46). Now let N, ,(v) be
defined by

v—1 v
Nio(v)= Z W u—v)+ Z (—vy u=",
=0 Pt

0<giga.

Then

v—1 ¥
Ni+l,cr(v)= Z ﬂa—i_l(#_v)Hl"' Z (ﬂ“"’)Hlﬂa—hl

a=0 p=1
=N, AV)— VN, ,_,(v) (48)
and
Jio= Y a,N;, (49)
v=1
by the relation
V-’[ . . h P -
Lo uu—v) = (1) Y (u—vY et (50)
H=0 p=1

The well-known formulas for 3° 47 give the expression

Noolv)=2 ¥ u*—v°

w=1

1
(0.+1)-l va+l+§Bz ((]T) vﬂf]
1
+ZB4(§) vl o+ B,
for o even,
=2 1 a {(51)
(a+l)_1v““+§Bz (T) vr;—l

1 g o
+- B, (—) VI 4 ko B VY
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where B,, B,, ... are the Bernoulli numbers which can be
found in [3]. Therefore, by induction using (48) the N, ,(v)
can be written as
Ni’l’:yirla)va’+!+yg¢'.a]va~—l+ o (52)
Here the last term is proportional to v or v*, depending on

whether ¢ is even or odd, respectively. Furthermore,
747 £ 0, because in the first approximation

N,;az2.[vx"“'{x—v)“dx
1]

1
=2(~—1)"v°“j- X711 — x)" dx.

o

By vsing the derived expression for N, ., and (49) for 5 even,

the relation (47) is reduced to

iLa?

5

s s
ﬂn.O z avvzn+1+ﬁn‘2 Z avv2n—l+ e +ﬁn,2n‘1 Z avvj’
v=1

v=1

Wi 2n) (n—1,2nm)

Y1 Y1
p=————————+ .. #0
7 2n n—1i *

because the y{"?" are different from zero, and by (48) and
{52)1t is clear that they have alternate signs. Then induction
gives the sought accuracy conditions for the interior scheme

5
Z C(vV2"+l=0,

¥=14

n=1,2, .; with 2n<t.

2.5. Diagonal Norms

When wsing diagonal norms the following relation, for
the norm A, is obtained from (27) and (45)

r—1

G+=1 0 Afr—wp i

va=0

=—(=rY*'+J .. 0<ij<t
5 v—
Jio= % (T we s s,

v=1 u=0

G=i+ ] (33)

The left-hand side of the relation above depends only on
a =i+ j. Therefore the same must be true for the right-hand
side, i.e.,

‘]i+ 1,4 =Ji,as

O<i+l<g, OD<it+lise (54)

This is easy to seg, because using Eqgs. (48) and (49} from
Section 2.4 for ¢ even, gives the expression

Jivra=dis— Z avar',ak](v]'

v=1

(55)
Thus by (52)

3w N (=780 T ay e, (56)
v=1

v=1

where the last term is proportional to v* because ¢ — 1 is
odd. But (56) was proved to be zero in Section 2.4, and
therefore the relation (54} is valid for ¢ even; o =1 gives
i={ and the relation {54} is no condition. Thus,

Jo1= i “v(‘il u+(u—"))

v=1 =10

N ag BN

a,(vi—v—1i)=—1L
i

(57)

For odd o > 1, the relation (50} implies that
5 v—1 ) ) v i )
Jio= 2 av( METEIIIES) u"'(ﬂ—v)’)
v=1{ p=0 H=1
g (07 {—vy —v* =0 =0. (58)

Therefore (54) also holds for odd o. Thus Eq. (53) is
equivalent to

r—1
S A= =L (e = (= 1)k,
v=0 g

=12, .,721, (59)
where by (57) and (51)
( Z vaO,a(v)tzBa Z avv=Brye
v == v=1
c=2,4,.,21=2,
5 ¥—1
kv=< 2 z a, Z .ut(ﬂhv)t» 0‘221’ (60)
v=1] p=>0
*%s g = 13
0, a=3,5.,2t~1

If r is set of 21, then (59) and (60) define a linear system of
equations which has a unique solution.
The following theorem is given.

THEOREM 2.3, Asswne that r = 2t and that the system of
Lq. (59) has a positive solution. Then there is a scalar product
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(7), with the diagonal norm A instead of H, and a difference
approximation  which is accurate to order t near the

boundary and accurate to order 2t in the interior such that
(54) holds.

2.6. Positive Definiteness of the Hilbert Matrix

The definiteness of the Hilbert matrix is easy to prove
because the elements can be expressed as in integral on

[0,1]:

1
gi,j=.[0 trI=2 dr,

Let x=(xg, .. x.)T, then the definiteness condition
xTGx > 0 becomes
T4 1 y T4l
T ; 2
xTGx= ¥ xi—lgijlj_1='f Yo 6 dr
L j=1 Q=1
1t+1 t+1
- o
= Zx,,_lt* X, 7 dr
U=t i=1

P

i=0

I

T
x 20y x; dr
i=0

1
=f [p(1)i* dt 2 0.
!

It is clear that this implies that x"Gx>0. The relation
xTGx=0 implies that p,(r)=0. However, {1,..,} is
linearly independent on [0, 1], so x has to satisfy x,=
xy= .- =x,=0, Thus it is proved that the Hilbert matrix
( is positive definite.

3. HIGHER ORDER DIFFERENCE APPROXIMATIONS

In the interior an antisymmetric stencil is used to obtain
the highest possible order of accuracy. This is achieved by
using 25+ 1 symmetric centered points. The difference
approximation in the intertor is accurate to order 2s and
fuifilis the conditions of Lemma 2.2, Then by solving the
system of Egs. (18) we obtain the interior stencil:

Depending on whether we use full norms, restricted full
norms, or diagonal norms, the relation between the order of
accuracy at the boundary and in the interior wili differ for
the difference operator Q. Properties such as stracture and

size of the boundary part of the operators will also differ,
so0 also will the number of arbitrary parameters in the
multi-parameter families of the higher order difference
approximations.

When using full norms (39) we are able to find, if we set
r=7+1 according to Lemma 2.9, a norm, H, defined by
(38) in Section 2.3. If we can specify those elements of p, ,
v=0_, 1, .., 7, not defined by the system (29), such that the
matrix R, becomes positive definite, then the norm H is also
positive definite. We should note that when 7 is odd then v
is even. Therefore there will be two elements to specify when
t=73, and three elements when t=35. Then according to
Theorem 2.2, if we set 1+ 1 =24, the difference operator Q
is determined uvniquely from the overdetermined system
{25) with the order of accuracy t at the boundaryand t + 1
in the interior. '

However, we want to compute the general form of the dif-
ference operator {0, ie., express it in the arbitrary elements
2. .. This is done simply by inserting the arbitrary elements
Xy, Xz, ... NOt determined by the system (29), in R, and
then solve for A and @ using a symbolic language such
as Maple. We then obtain a multi-parameter family of
operators, of which the parameters can be chosen to
minimize the bandwidth of the difference operator or in
some other way. When the parameters have been chosen
the eigenvalues must be evaluated to check the positive
definiteness of the corresponding norm.

The structure of the boundary part and the first interior
point for the full norm, H, and the corresponding difference
operator, (, for the case of accuracy three at the boundary,
is shown below. The non-zero boundary part of the
operator has in general the size {t+ 1) x (3(r + 1)/2),

® X X X
X X X X
A S
X X X X

X X X X
X X X X
X X X X X
TXMoOX X K X
O X X X X
XX X X X

In case of restricted full norms we set r =1+ 2 according
to Lemma 2.10. Then one can choose H in the form (40)
such that (37) holds. The structure for the norm and the
operator for the case of accuracy three at the boundary is
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x
X X X X
X X x X
H= X X X X ,
X X X X
1
XX X X X
X X X X X X X
X X X X X X X
=] x %X X x %X %X X
X X X X X X X
X X x

e

The restricted full norms have the advantage over the full
norm that they can be used to show stability [4] for
first-order systems.

If diagonal norms are uvsed, Theorem 2.3 states that if
r="271 and the system (60) has a positive solution {which it
has when 1 < 4), then there is a difference approximation 0
which is accurate to order t near the boundary and accurate
to order 27 in the intertor. However, Q s not determined
uniquely when v 2 3. The system (25) turns out to give an
infinite set of solutions. Therefore to evaluate a specific
antisymmuetric boundary matrix 8, we instead solve the
reduced system,

&1 B1a—i-1 b,
Em1 gmn—i»—l bn—iul
Z

bnﬁkG(:vn"’k), (61)

| .f{go
Zn—i-1

where the b,, ..., b,_; are chosen arbitrarily and i depends
on the order of accuracy, with i=1 when r=3 and /=3
when t=4. The size of the non-zero boundary part of
the operator Q becomes (27 x3t), with the clements
O{1:1,2t:31) equal to zerc. Below the structure of the
norm, A, and the corresponding difference approximation,
@, which is third-order accurate at and near the boundary
and sixth-order accurate in the intetrior, is shown.

X X X X X X
X X X X X X
X X X X X X
X X X X X X X
thxxxxxxx
XX X X X X X X X
x x x 0 x x x
4. RESULTS

The difference approximations, Q, of d/dx that have been
evaluated, together with norms and interior stencils, are
described below. A more detailed description and the exact
elements of the diflerence operators together with norms
and intertor stencils are given in Appendices A and B.

4.1. Diagonal Norms

As has been told earlier, difference approximations which
are stable in a diagonal norm, have been evaluated with the
accuracy of order =1, .., 4 at the boundary, and 27 in
the interior. They are listed in their complete form in
Appendix A.

With r=1 and 2 at the boundary, the operators are
unigque.

When t=3 we obtain a one-parameter family of
operators. By determining the parameter such that ¢, s is
zeroed, an operator with minimized bandwidth is com-
puted. The resulting operator has nine non-zero diagonals,
four superdiagonals, four subdiagonals, and the main
diagonal.

Finally, T =4 gives a three-parameter family of difference
approximations. Here an operator with minimized
bandwidth is computed by soiving the linear system of
equations g =g+ =¢,,7=0, thus giving the operator a
total bandwidth of eleven.

4.2. Full Norms

Difference approximations which satisfy the summation
by parts criterion (9) with respect to full norms, withr =3, 5
at the boundary, and 7 + 1 in the interior, have bgen com-
puted, of which the case v =3 15 listed in Appendix B.

For =3 we have a two-parameter family of norms and
difference operators. As earlier we obtain a version with
minimized bandwidth of the aperator by determining the
parameters such that go s and gq, s are zeroed. This leads to
solving a non-linear system of equations, of which one
solution gives a positive definite norm. The corresponding
boundary part of the difference operator will have four
superdiagonals, three subdiagonals, and the main diagonal.
However, if we have a finite computational domain we
would like to use the boundary part of the operator at



58 BO STRAND

the upper boundary as well, This can be domne simply by
reflecting the stencils of the lower boundary. Thus, at the
upper boundary we will have four subdiagonals, three
superdiagonals, and the main diagonal. Hence, the resulting
difference operator would then have totally nine non-zero
diagonais.

In the case we have accuracy five at the boundary and six
in the interior we obtain a three-parameter family of
difference operators. However, the general form of the
elements of the operator become so enormous that their
practical use must be considered as doubiful. An exact
version with optimal bandwidth could not be computed
because the obtained non-linear system of equations
consists of the arbitrary parameters raised to a power of five.

4.3. Restricied Full Norms

Difference approximations with 7 =3 at the boundary
and 7 + | in the interior, have been computed and are listed
in Appendix B.

This leads to a three-parameter family of norms and
operators, and we therefore have one degree of freedom
more than for the full norm case, but at the cost of having
an extra point to be boundary modified. The parameters are
then chosen such that g, 4, ¢, . and ¢, 4 are zeroed. The
resulting difference operator will have a total bandwidth of
nine, i.e., the same as we had for the diagonal norms and full
norms.

5. NUMERICAL EXPERIMENTS

Qur theoretical analysis is made for a simple semi-
discrete scalar problem. For a study of the numerical
behaviour of these difference operators in more general
situations we refer to the Ph.D. thesis of Pelle Olsson {27
In [2] the numerical behaviour of a fourth-order accurate
method is compared with a second-order method. The
difference operators used are the ones that fuifill the summa-
tion by parts rule with respect to a diagonal norm, and
which are third-order accurate at and near the boundary,
and sixth-order accurate in the interior. The two-dimen-
sional non-linear Euler equations with a forcing function
are used to show that the convergence rate to the exact solu-
tion is fourth order globally, To measure the efficiency of the
fourth-order method versus the second-order method the

simple model equation u,+ u, =0 1is used in [2]. The com-
parison i1s done by computing the relative error for the
numerical solution and the exact solution and by comparing
the consumed CPU time for the two methods. Finally,
the two-dimensional non-linear Euler equations over a
backward-facing step, are solved on an CM 200, and the
consumed CPU time are compared for the fourth- and the
second-order methods. The conclusion in [2] is that if very
high accuracy is needed, the fourth-order method would be
the preferred choice.

6. CONCLUSIONS

The results regarding the difference approximations that
fulfill the summation by parts criterion (3) and (9), using a
diagonal norm, turned out to be better and more useful than
was expected. This is true when parallel computers are used
because, instead of obtaining a unique difference operator
we obtained one- and three-parameter sets of solutions
for accuracy of orders three and four at the boundary.
The parameters were then determined to minimize the
bandwidth. For the full norms and the restricted full norms
we obtained multi-parameter families of difference
approximations when third-order accuracy or higher was
required at the boundary. The parameters should be deter-
mined such that the norm (in the full norm and restricted
full norm cases) becomes positive definite. If we use paraliel
computers it is of interest to minimize the bandwidth of the
difference operator since it determines the memory require-
ment and also the amount of computational work. There-
fore, if we want third-order accuracy at the boundary all
three cases give us a bandwidth of nine, but the diagonal
norm gives us an interior stencil which is sixth-order
accurate without any extra cost in memory or computation.
If we want accuracy five or more at the boundary we have
to consider full or restricted full norms. For scalar hyper-
bolic equations they can both be used to show stability, but
if hyperbolic first-order systems are considered, there are no
stability results for the full norm case and the restricted full
noim should be used, see [4]. However, because the
numerator and the denominator of the elements in the exact
representation turn out to be very large numbers, it is
doubtful if the difference operator satisfies the summation
by parts energy norm in finite precision arithmetic.

APPENDIX A: DIAGONAL NORMS

Here we present the difference operators, which satisfy the summation by parts energy norm (9), with corresponding
norms and interior stencils. The boundary part of the operators, @ = [4 ™' B4 ~'C], has the size {27 x 37) and are accurate
to order 7. The antisymmetric interior stencil uses 27 + 1 symmetric centered points and is accurate to order 21.

First-order accuracy at the boundary,
Interior stencil. a, =4.
Norm. ly,=1,4,=1

Boundary operator. g, o= —1, Go1=1,g902=0.9,0= —%, g1.1=0,9,,= %
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Second-order accuracy at the boundary.

Interior stencil. a; =3, a, = —1.
NOl’m 10_"48311 48,12-—ﬁ,)~3—‘-
. _ 4 _ 3 _ — 1 — 1 —
Boundary operator. ‘10,03" - 11, do,1 = 34, %,92" —17s 03~ ’;;Zs ‘10,4—0549'0‘5—& Gr0=—% q1y=0,41,=3.4,3;=0,
— _ — 3 — — 39 — — 32 — 2
1.4=0.915=0,930=55.93,=0,03,= —5%.93:=0,¢3.= 5. 435~ — 35

Third-order accuracy at the boundary.

Interior stencil. &, = 4,0!2— — 55, -‘-%-

1
13649 12013 3 _ 270 3 _ 5359 R77 3 _ 43801
Norm. A¢=Fam: 41 = seat Ay= A4= Zeags 45 = 23300

Boundary operator. goo= —H#882, go, = 8(16200x, —953)/40947, ¢, = (—1036800x, + 715489)/81894, g¢,; =
3(86400x, — 62639)/13649, qq .= 5(—207360x, + 147127)/81894, g, s={(129600x, —89387)/40947, qoc=0, ¢p,=0,
Fos=0;

g;.0=8(—16200x, + 953)/180195, g,,=0, g,,=(86400x,~57139)/12013, g, ,=(—1036800x, + 745733)/72078,
q1.4=5(25920x, — 18343)/12013, g, s = { —345600x, + 240569)/120130, g,  =0.g, + =0, g, s =0;

4,0 ={(1036800x, — 715489)/162660, g, , = ( —86400x, + 57139)/5422, 9, , =0, g, 5 = (259200x, — 176839)/8133, ¢, , =
(—345600x, + 242111)/10844, ¢,  ={259200x, — 182261)/27110, g,6=0,45,=0, 425 =0;

ga,0 = 3(—86400x, +62639)/53590, g, , =(1036800x, —745733)/64308, g4, ,= (—259200x1 + 176839)/16077, g, 45=0,
3.4 = (259200x, — 165041)/32154, g5 s = (~ 1036800x, + 710473)/321540, ¢ 6= 5355, 42.7=0, 435 =0;

q4.0=(207360x, — 147127)/47262, q,,=5(—25920x, + 18343)/7877, q4,={345600x,—242111)/15754, 4q4;=
(—259200x, + 165041)/23631, g4 s =0, g, s =8640x, /7877, g4 6 = — 3525, G471 = m“%, gag=10;

gs.o={(—129600x, + 89387)/131403, g5, =(345600x, —240569)/87602 gs..=1{(—259200x, + 182261)/‘43801 gs3=
(1036800x, —710473)/262806, g5 4 = —43200x, /43801, g5 5 =0, g5 s = 35000, Gs.7= — 35007- Gs.8 =

4380]

Fourth-order accuracy at the boundary.

Interior stencil. o, =%, ¢, = —1, o3 = 7153, % = —Tip-
Norm. 1,=1498139/5080320, i, = 1107307/725760, 1, =20761/80640, 1, =1304999/725760, 1, =299527/725760, A;=
103097/80640, 4 = 670091/725760, 4, = 5127739/5080320.

Boundary operator. gq,= —2540160/1498139, g, ,=9(2257920x, + 11289600x, + 22579200x, — 15849163)/5992556,
go.2 = 3(~33868800x, — 162570240x, — 304819200x , + 235236677)/5992556, g5 = (609638400x, + 2743372800x, +
4572288000x, — 3577778591)/17977668, g, 4 = 3( —16934400x, — 67737600x, — 84672000x 5 + 67906303)/1498139, g4 s =
105(967680x, + 2903040x, — 305821)/5992556, g4 = 49(—1244160x, + 18661400x, — 13322233)/17977668, g4, =
3(—~6773760x, — 33868800 ; + 24839327)/5992556, 455 =0, 45 =0, 9416 =0, g4.1¢ =0;

gy.0=9(—2257920x, — 11289600x, — 22579200x; + 15849163)/31004596, g, , =0, g, , =3(7257600x, 4+ 33868800x, +
60963840x, — 47167457)/2214614, ¢, 3 = 3(—9676800x, — 42336000x, — 67737600x, + 53224573}/1107307, g, ,=
7(55987200x, + 217728000x, + 261273600x, — 211102099)/13287684, ¢, s=3(—11612160x, — 33868800x, + 3884117)/
2214614, g, = 150{24192x, — 338688x, + 240463)/1107307, q, - = (152409600x, + 731566080x; — 536324953)/46506894,
158=0,4,9=0,4,,0=0,4,1=0;

ga0 = (33868800x, + 162570240x, + 304819200x, — 235236677)/1743924, g, , = (—7257600x, — 33868800x, —
60963840x, +47167457)/124566, g, » =0, g4 5 =(24192000x, + 101606400x, + 152409600x, — 120219461 /124566, q, 4 =
(—72576000x, — 270950400x, — 304819200x, + 249289259)/249132, ¢, s = 9(806400x, + 2257920x, — 290167}/41522,
g = 6( —134400x, + 1693440x, — 1191611)/20761, g, .= 5(—2257920x, — 10160640x, + 7439833)/290654, ¢,,=0,
429=0,9210=0 G2, =0;

43,0 ={ —609638400x, —2743372800x, —4572288000x, 4+ 3577778591)/109619916, g, =H9676800x, +42336000x,+
67737600x; — 53224573)/1304999, g, , = 3(—24192000x, — 101606400x, — 152409600x, + 120219461)/2609998, ¢, , =0,
g1.4="9(16128000x, + 56448000x, + 56448000x, — 47206049)/5219996, g, s =3(—19353600x, — 50803200x, + 7628371)/
2609998, g = 2(10886400x, — 114307200x,; + 79048289)/3914997, gqi 5 = 75(1354752x, + 5419008x, — 3952831}/
18269986, 455 =0, 439 =0, ¢516=0, 95,1, =0,

Ga0 = 3(16934400x, + 67737600x, + 84672000x; — 67906303)/2096689, g, , = 7(—55987200x, — 217728000x, —
261273600x, +211102099)/3594324, g, ,=3(72576000x, + 270950400x, + 304819200x, — 249289259)/1198108, ¢,:=
9(— 16128000x, — 56448000x, — 56448000x, + 47206049)/1198108, g, ,=0, ¢, s=105(414720x, + 967680x, —~ 165527)/
1198108, gq4=15(—967680x, +6773760x, —4472029)/1198108, q,,=(—304819200x, — 914457600x,+ 657798011)/
25160268, g4 4= —2592/299527, ¢40=0, ¢4 10=90, 44, =0;
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gs.0 = 5(—967680x, — 2903040, + 305821)/1237164, g5, = (11612160x, -+ 33868800x, — 3884117)/618582, g5, =
9( ~ 806400x , —2257920x, + 290167)/206194, g, 5=(19353600x ; + 50803200x, — 7628371)/618582, g5 4==35(—414720x, —
967680x, + 165527)/1237164, qs5=0, gso=80640x,/103097, g5,=80640x,/103097, g5 .=3072/103097, gso=
—288/103097, g5 10="0, 511 =0;

g,0="T7(1244160x, — 18662400x, + 13322233)/8041092, g, = 150( —24192x, + 338688x; — 240463)/670091, geo=
54(134400x, — 1693440x; + 1191611)/670091, g4, = 2(—10886400x, + 114307200x, — 79048289)/2010273, g44 =
15(967680x, — 6773760x, + 4472029)/2680364, g, 5= —T25760x, /670091, =0, go,=T25760x,/670091, gsq=
— 145152/670091, g, o = 27648/670091, gg 1o = —2592/670091, g ,, = 0;

g 0 = 3(6773760x + 33868800x 5 — 24839327)/20510956, ¢, , = (— 152409600 ,— 731 566080x; + 536324953)/30766434,
g1, = 45(2257920x, + 10160640x, — 7439833)/10255478, ¢, = 75(—1354752x, — 5419008x; + 3952831)/10255478,
7.0 = (304819200x, + 914457600, — 657798011)/61532868, g7.5= — 5080320x,/5127739, q..¢= —5080320x,/5127739,
7.1 =0, gy = 4064256/5127739, g, g = — 1016064/5127739, g, o = 193536/5127739, g, ;, = — 18144/5127739.

A.l. Minimum Bandwidth Operators

Singe the third-order accurate difference operator is really a one-parameter family of operators, and the fourth-order
accurate difference opertor is a three-parameter family, the parameters can be used to minimize the bandwidth.

The minimization of the bandwidth is of interest when parallel computers are used. In the case of a third-order accurate
operator we therefore choose x, such that g, s is zeroed. The resuiting operator will then have four non-zero super-
diagonals, four subdiagonals, and the main diagonal. Thus, a total of nine non-zero diagonals are needed to store. For the
case of accuracy four at the boundary, x,, x,, x; are determined such that g, ¢, ¢, 7, 4, 7 ate zeroed. Thus, resulting in an
operator with a total of eleven non-zero diagonals. The operators with norms and interior stencils are given below.

Third-order accuracy at the boundary, minimized bandwidth, q, s = 0.

Interior stencil. ot, a=—3, a; =2
Doty p 5359 _ 7871 43801
Norm. 4= 432‘00, Ay =556, A= 2 A3 =333, 44 = Feag» As = 33300-

Boundary operator, mmlmlzcd bandw1dth. doo= —21600/13649, gq,,=81763/40947, q,,=131/27298, gqq;=
~9143/13649, ¢,,,=20539/81894, g, s =0, g4 5 =0, 5.7 =0, g5 5 = 0;

¢1.0= —B81763/180195, ¢,,=0, q,,=7357/36039, g¢,,=30637/72078, g¢,.= ~2328/12013, g, s=6611/360390,
7:16=90,9,7,=0,9,,=0;

gr0=—131/34220, ¢, ,= —7357/16266, q,,=0, g,,=645/2711, ¢, ,=11237/32532, g, s= —3487/27110, 4, =0,
427=0,g:5=0;

G3.0=9143/33590, g5, = —30637/64308, g;,= —645/5359, g5,=0, g¢,,=13733/32154, g;,= — sy G35 = T35,
¢37=0,¢55=0;

Gao= —20539/236310 Gar= 2328/7877 Ga.=—11237/47262, q4.= —13733/23631, q44=0, qas=89387/118155,
dae=— 787‘75 d45= 7;745’ da3=

4s0=0, gs,= —-6611,1262806, qs.0=3487/43801, qs;=1541/87602, gq;,= —89387/131403, g;:=0, gs6=
32400/43801, g5 , = —6480/43801, g, s = 720/43801.

Fourth-order accuracy at the boundary, minimized bandwidth, g, ¢ = g0 ;=¢,,=0.

Interior stencil. @, =%, ¢y = — 1, 0y =&, 2, = — 555,

Norm. A,=1498139/5080320, A,=1107307/725760, A,=20761/80640, A,=1304999/725760, A1,=299527/725760,
As = 103097/80640, 1, = 670091/725760, 2, = 5127739/5080320.

Boundary operator, minimized bandwidth. g, , = —2540160/1498139, g, , = 37052897/17977668, g, , = 7891273/8988834,
go,3 = — 1624221/2996278, q, ,=15181679/8988834, g, ;= —6971555/17977668, ¢5¢=0, ¢o:=0, go3=0, go5=0,
g0.10=0, G011 =0;

Gro= —~5293271/13287684, ¢, , =0, q,.= —2931787,6643842, g, ,=12616429/6643842, g, ,= —06970881/4429228,
gy,5 =4026475/6643842, g, s = —101360/1107307, 4, ; =0, 4, 3=0,4,5=0, 44 10=0, 4,1, =0,

gs0= —607021/603666, ¢, ,=2931787/1121094, ¢,,=0, g¢,;= —~23428253/2242188, ¢,.= 9447614/560547,
Ga.5 = —217571/20761, q, ¢ = 2847947/1121094, ¢, , = —1185475/15695316, 4, 3=0, §25 =0, 92 10=0. 2,11 =0;

gs0="7624221/18269986, q;,= —12616429/7829994, g, ,=23428253/15659988, q;3=0, ¢1,= —2184329/1304999,
Ga,s = 7700062/3914997, q; ¢ = —3371361/5219996, ¢, ; = 2783695/54809958, 413 =0, ¢15=0,¢110=0,43.: =0,
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Gso= —15181679/12580134, ¢, ,= 6970881/1198108, g,.,= —9447614/898581, ¢, ,=2184329/299527, 4., =0,
gss= —10921405/3594324, q, . = 3604685/1797162, q, ;= — 1462269/4193378, g4 5= —2592/299527, 4,5, =0, ¢410=0,
Gan=0;

gso=0971555/77941332, g , = —4026475/5567238, g5, = 217571/103097, g5 5 = —T700062/2783619, g5 4= 10921405/
11134476,q95 s=0, 95 c = 1714837/5567238, g5y = — 1022551/38970666, ¢ s = 3072103097, g5 o = —288/103097, ¢5.10 =0,
gs,11 =0,

96.0=0, ¢g¢,=101360/670091, gq¢.= —2847947/4020546, gq45=3371361/2680364, g, .= —3604685/4020546, g4 5=
—1714837/4020546, g, 6=0, g5 1 =06445687/8041092, g5 5= — 145152/670091, g4 o =27648/670091, g¢ o= —2592/670091,
9e,11 =0;

G:0=0, ¢q7.=0, g;.=1185475/61532868, ¢;,= —2783695/30766434, g, 4= = 1462269/10255478, q;s5= =1022551/
30766434, g, .= —45119809/61532868, ¢;,=0, ¢7.= 4064256/5127739, g,9= — 1016064/5127739, q7,0= 193536/
5127739, g, ,, = —18144/5127739.

APPENDIX B: FULL NORMS AND RESTRICTED FULL NORMS

Difference approximations with corresponding full and restricted full norms and interior stencils are presented in their
general form. Also, difference operators with minimized bandwidth are given.

8.1. Full Norms

The boundary part of the operators, Q = [H ~'BH ~'C], has the size ((z + 1) x 3(t + 1)/2) and are accurate to order 1.
The antisymmetric interior stencil uses 7 + 2 symmetric centered points and is accurate to order 7+ 1.

Third-order accuracy at the boundary.

Interior stencil. a; = %, @, = —3.
4421 i 235099 L S35 1 1 16265 1.,
Norm. ho o= + :le +Ex2»h0814— Bgd —fx,— 12x2s£180 2= 3 + 3%+ 1322, };?93—' 258 T 24x1 36X23
99 _ 85 ZEslse 13 5319}
ho=28 sxl |2x2,ﬁ11— 5 +4x +4x2,h17_ B —Fx —ax, b= — 4% ate +4x1-i— 2-"2,
51225 88159 33953 234971
hy o= ';2_216 -+-4x,+ux2 hy ) =558 s xzahzz—" % +4x1+4x2,h23— seg - sxl 12-’152,
16263 £19) 1 234971 CR1se 1 L
hayo= 1888+ 4ix | —3gxa, by = — 3 +ax1 + X, My = FEE — X — X, By = —SF 4 5%+ 36Xz

Boundary operator.
fa0.0= —(33048723219840x, + 85705756992x, — 422039808 x, x, — 154648248192x7 + 248583168 x|
—2415569939181083)/6
fao.1 = (—127236096x, x, — 631668895465685 + 8529226885512x, + 25889227344, — 39533821632x7 + 63265536x 1)
Sd0.2=—3(—57376512x, x, — 175395768352673 + 2221076753280x, + 11730429216x, — 9796298112x}
+ 15303168x3)/2
S90.3=—(111082752x, x, + 38379992551957 + 169611442992x | — 22853387520, — 31133859847 + 6718464x7)/3
J90.4=8(1114560x, x, — 3126314790419 — 230699286, + 53751114648, + 489888.x> — 288112464x7%)
0.5 = —6(176256x, x, — 630683707861 — 36417960x, + 10493831412x, +93312x3 — 55295136x1)
fa1.0=(—2467535470632x, — 7560127440x, + 37366272x, x, + 11487655872x% — 184757767 + 182013256354915)/3
fq,.,=(31746816x | x, + 349348112239985 — 4934674023552, — 6484065984x, + 23561995392x7% -- 38071296x7}/2
S41.2=(—32866560x, x, — 330480117255149 + 4654174009968, + 6702105024x, — 22182937344 x7 + 35831808x7)
Ja1.,=(24862464x, x, + 744757008535873 — 10734014433024x, — 5213420064x, + 51861845376x] — 83980800x)/6
J4..4=(352512x,x, — 33880491134138 — 61652880x, + 495784036872x, + 3919104x| — 2416267584x7)
Jq,.5s=1(41472x, x, + 4889298728344 — 9473328 x, — 71106806016x, — 559872x7 + 345347712x%)
Jq2,5= (4468035121344, + 11761519680x, — 57708288x, x, — 20898684288x7 + 33592320x] — 326921290536385)/6
Sq2,1=(51549696x, x, + 298516556982667 — 4087820882232x, — 10494673200x, + 19145771712x7 — 30792960x7)
S5, ={—88729344x, x, — 473456622343649 + 6436561653504x, + 18126860832x, — 29998843776x] + 48148992x7)/2
J425 =(28512000x, x, + 79236815169347 —985971485232x, — 5935521024, + 4306473216x% — 6718464x1)/3
J2.4=(—8211456x, x, — 39288284063904 + 1682660304x, + 528786861984x, + 3919104x] — 2447947008 x7)
S42,5= (1140480, x, + 5574648286010 — 233163792x, — 75262164984 x , — 559872x7 + 349220160x7)
Jd3.0=(—2373828501672x, —2530216656x, + 12358656, x, + 11400595776x% — 18475776x3 + 166688181811999)/3
f41., ={(—40414464x, x, — 506993048493859 + 7205150657088, + 8262613440x, — 345591256322 + 55987200x7)/2
g2, =(51570432x, x, + 533353205953455 — 7531408278288 x, — 10511667648x, + 359803607047 — 58226688x3)

S35 ={(—125680896x, x, — 1783398165357899 + 25434754033536x, + 25733909088x, — 1222635720962
+ 198194688x1)/6
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43,4 =(—16775424x, x, — 44437957089478 + 3387345264 x, + 560447103240x, + 3919104x3 —2477013696x%)
Jas s =(2239488x x, + 6251575671936 — 452563632x, — 79463658528, — 559872x] + 353279232xD),

where the denominator is given by f=(—35811072x, x, —224983145017201 + 7261488864, + 3101605909056x, +
23514624x7 — 14592286080x2).

8.2. Restricted Full Norms

The boundary part of the difference operators, @ = [H 7'BH ~'C], has the size ((t+ 2) x [(v 4+ 2) + (t + 1)/2]) and are
accurate to order 7. The antisymmetric interior stencil uses 7 + 2 symmetric centered points and is accurate to order 7+ 1.
The case of third-order accuracy at the boundary is given below,

Third-order accuracy at the boundary.

Interior stencil. o, =2, a; = — 5.

Norm. Ag g =x1, hg 1 =0, by =0, ly 3=0, by 4 =0;

io=0, hy,=~88—16x +5x,+3%3, ho=1000129/864 4 24x, — 3x, — &5xa, Ay 3= —233699/216 — 16x; +
1x, 4 {5x3, Ay 4 =244393/864 + 4x, + Lx, — f-xa;

hyo=0, By =1000129/864 +24x, — 3x— sxy, hyp= —34867/9 —36x, + Ixa+ 1x5,  hy = 364837/96 + 24x,
Bx,—ixy, hya=—234337/216 — 6x, + 1x, + $5x3:

By =0, hyy= —233699/216 — 16x, + 10, + x5, s, = I64837/96 + 24x, — B, — Ly, hy 5=~ —139673/36 - 16x, +
Ix+ x5, by 4 =1005377/864 + 4x, — 2x, — x5

Bao=0, hy  =244393/864 +4x, + Xy — kxs, hey= —234337/216 ~ 6x, + Lx, + xs, has=1005377/864+4x, —
3xy— 153, haa= —38977/108 — x, + 5, + & x5.
Boundary operator. gop=—4/x,, §o1=—3(—6+13x,)/x;, go2=3(~6+19x)/x;, gos3=~—(=2+7x1)/x\, qo4=
§(~=3+11x))/x,, gos=0,906=0;

12(138931 27, 2274 + 235614 752457507, + 3822885086043 + 1529781768z, —
6014154398427, — B63000856x, x5 — 542117763 — 24779527925+
Fqro=1{ 35754048z,% + 27993623 + 2485325 zpaat
3732487212 — 246842380857 x; + 6970730395207 —
536751 78375625 — 92472192r1;) ‘
—(— 5658439687, 7525 — 20937420673405020x, — 2888320878754562,—
2458655216642, + 0463714786944 2, £5 + 334373780160, x5 + 4542783056643+
400142592z, ra — 136752326320z, =2 + 730031042, 25 — 24186470423+
7165361622 379 + 107054242123 — 710006056704 ra 4
200757035381760z7 — 26631991 20627 5 + 62069541085794875)/6

3{—51500 1682, 122 — 19124492257061602, — 253822671606322, — 2735401752025+
B256TT59034882 127 + J0I6U2BILz, Ty + B6BLETIONNZE 4 4449M 56a w5 —
124603868162, 2 + 67184647, 2} — 2108851223 + 5971968z z,ea+

BU5TUSArTrE — 502421713927 x; + 16720752048480x% —

221935260823 75 + 5506314313768875)

—(—883841921, 2973 ~ 4692072170000640z, ~ 47292026246784x, ~ 615830744325+
1033870L506401875 + 2221 27327468802, x; + 48561073344, 1y + TI65046636825+
103763680277, — 359318384641, 23 + 201553924, 13 — 3919104023+
QI88T872xt zzy + 3581808272} — 2360686855687 12+

6601901 179302027 - 8877330432z ¢7,)/2

(17164082, 2,25 — 875467742864040x, + 10802001206304z; — 3638136297624+
STR404861 3056w — 144838456641 7 — 1861540185623 + 504501 1 2w725—
11106180864, 3 + 67184645225 + 1007769623 + 8957952z 2224+

134360283323 — 88R63257688% 2, + 25094620422720=3

1948620566030:75 ~ 332809801222243/3

—24({5217696z, 3 ~ $9411671042, 27 + 3006722, 2275 + 42BB1524792707, —
198051264y 24 4 16320623 — 3041310241} + 23328073 3 186213363048z, —
14293816225 — 37481321 648875)

2(82114561, 23 — 1588989031201, 75 + 49766474223 — 324207360z 254
6870618696000, + 27993623 — 52220039213 + 3214742935327+

6T Lzpmy ~ GHIRTEILO6TILE — L84 1488505)

43(6739271 2273 + 3051548006720z, + 90042984288z, + 1938993667, —
83803314961, 7, — 56223036z, 23 — 1348941602% — 3058562223+

5999184z, 2% — 20700319137235 + (998423 + 124416z zp254

746496237} — 2111349888771, + 8151286169238z] ~ 58672512x!z5)

—(—312528322, T2y — 54642563323801 2z, + 207YT5305620082, + 57712323 18dra+
4487651144064z, 27 + 9351671616z, 2; — 30003618240z — 8816947223 15—
YHBR0LE088, 2k + BTIB4B4x, 23 + 19116544r) — 409BL4TAIFBIATOI+
716636162} 1,7, + 4299816962723 ~ 1216137935488 2+

4G9514083350528c% — 379536601227 7,)/3

I(613TBEBOT, 2oz + 1665TI6RO67557T6, + 357T236538T85265; + 64812507204z, —
541444 18602243, T3 — 4074237100821 75 — 5425021785627 — 1030371 84wyt
566463230, 18 — 2230488z, 2] + 25366848x7 — 8065GLIBTTERI4ELL
23887872z x7ey + 143327232270 — 405379178496 2, +

1565046944501 7623 — 11265122304 Y23)/2

—{149299200z; 25 + 3710751586940736z) + 6981879000467 + 1167869525762, ~
1276658557171 25, 57 — 948616064642, 75 — 10667602022422 — 186727680z,a+
15170261712z, 22 — 6718464153 + 559872002 — 15636088717639621+
2388787222 22wy + 1433272022123 — 4053791784962 724

1565046044501 T2 — 1126512230423 25)

foa =

Je=

foa =

fna=

fis =

fme=

o=

faa =

fqa2=

ftan=

—————— e ———————— e e ———



Fpa=

frs=

f e =

Jua0 =

foan =

f’h} =

ftaa =

faa=

Soas =

fq:;,ﬁ =

f'h.ﬁ =

faan =

fgsa=

fgua=

—

=

-
n

Jas =

Jus = {

e ——— ——————— e ———— e ————— e e —————

SUMMATION BY PARTS

(3359232000, 725 + B2077832X0070624.0, + I3TO0ATLRA20004w; + 207352) 50560~
1850080345459 2T, 75 — 2150854091440, 73 — 21131250432023 — 328935168 0,151
180603089287, £2 — 6718164x, 7] + 11085465623 - BOTAUSR2RIRTARE0U L
35831808r] 1279 + 2149608481777 — BOBOBBTOTT44 730+

234T5T041675264 72 — 1680768345678 1,)/6

—2(91072512z, 2% ~ 1951967600647, 72 + T2161281, 7473 + BT271245005664 2, —
45862192245, 13 + 1950552xF — B7307770561] — 4BE52I2 214

2419457482692z, — 5337TB32BET04223 + 2058900408:x5)

24{Y953282, 1§ — 21753930241, 77 + B29447 2073 — 5IITI2M T a4
9767518160005, + 2332823 — 443659683 + 287500181762, — 5702205~
6343369900435 + 36009954x3)

12{—8501 76z, Ta79 — BRLTHATI49046r; + 330550181532:ry — 5439006, +
19074174192z 1 29 + 48653049621 79 - BEVO961605 + 311Mwsicy ~ 7B 50685 23+
27903673 + 74649623 T4y + 100776962725 — 204690136320+

840856Y556448x2 — 6919T124803235 ~ 42665356827 25)

—{ 070444802 2425 + 8021703I7138424, + 1456730901 169927y + 1003223819520, —
5837016765120z, 24 + 50217900480z, 73 - 2285115300725 — 1557480965225+
11785305600, 2§ — 67184642, 23 + 120032352+ + 214000848zt £axyh
204237644827 2F — 580507592601 623y + M2166803L2576245F —
FIH11802TI0I3409 — 1228762875842 23) /6

(233602087, 2,73 + BOSOOTROTOZG512z, + 23525330061320%, + 00168830881, —
31 THRLIR0880 vy — 149201752300,y — 36421 265088 x] — 18024876, my+
1438305984 21 od - 22304885, 73 + 192222723 4 1791500403575+
2418647047} z§ ~ 4912563271682} 2, + 20180566935475241 —

1623368563203 x5 — 5175484656324 797)

—3(494340242, 145 5 1104618340781 76z, + 33721099789824z, + 528280715622, -
3848768369792z, 12 — 31177517760z, 25 — 5176718553622 — 84540672r,75+
47392542722, 28 — 2230488z, 73 + 2724710423 + 23887V 2] xamy+

32248627213 2% — 6550084362243 25 + 26907422580633627 —

136529141 823 Ty — T506161222686001}/2

(500152321 2015 — 9540783307023 20, + 13UGET4ITTO04z, + 46R50305760:,+
6303450071808z, 2, — 326384795527, 15 — 19804569084x) — 808490882525~
118004221442, 23 + 6718464z, 2] + 1007769623 + 268738562 zamy+
I62TGT0563 e ~ 7368841907525z, + J027085040321 2827 —

15359528448:% 2, - 3454300785008023) /3

—16(14912230420107z, — 333713202482, 25 + 147316320, 238 — 828598890z, 23+
13530243, 2275 + H0I6135Tay — TAG5I4Z2I58664 + 24494423 ~ 15137281225~
4704007687 + 317926705648,)

2(15676416a,z3 — 360782138887 25 + 14929922 2525 — 912777984z, 224
16198255166400z, + 27993613 — 53670729623 + 361410270012x; -

166924817, — S4486TBTIG2055 + 10354TT000T,]

48— 4924802, 7,35 -- 103005481520652; + 698TBR10916, — 20333197815+
273930150282, x5 + 3178172167 25 — 1243848962 + 3214081575

17515440z, x§ + 6998423 + 248832237525 + SOT1968x {5~

102693381125z, + 42148708944003 — 16709068827 x;—

12144968733650)

—(—334430208x, 727, — B101800797626240x, + 9933326202360z, — 1456461574562+
24624376265088z; xp + 2)44587250527, 5 — 2418)229376x7 4 2300575687,75—
230129786887, 23 + 67184641, 73 + 151165443 + 1433272322 25wy +
343085356827 2] — 591513875201 2= 17 + 242TT6363517440027 -
9624423628871 15 — 438610159220645)/3

H— 146976768z, 1275 — 4130207200252480,r, — 171676952184967; — 6904425830475+
141457318603527, 2, + 93377018018, 74 + 2395023552022 + 1099630087,22~
163084492807, 13 + 6718464 ;23 — 1194303627 + 4777574z 75+

114661 78562723 — 1971712817504 x{ 1, + 800255211724800x] —

3208141209617 x5 1 4203793001873085)/2

— (- 269733888, Tory — BEEF52GTIROTONE:, — §146TIVRING264 T — M4 TEMDrs+
3400845199302 15 + 168566526144, 73 + 123996904 0453 + EA1641856T515—
424233676802, 23 -+ 20155392z, 13 ~ 6494515213 + 4777574423227+
114661785620 - 1971712007504 £y + SO925521 ] F2480027 -
3208141209622 1y + 18332637050024935)

{—BT3439302z, pary — 25986204059404320x, — J06855074673792x, ~ 35371 7343072124
104545T7620G832:x, 72 + 4204574503922 7y + 4766255965443 + 566611200r,15—
1469272089601, 22 + 73003104z, 73 — 25194240023+ '

1166361627252 + 1716026784223 — 205756037625677 2o+

120388281 738720024 ~ 4812211819475 + GTIOT206U8GTTIIIG /6
—-6(584755207) 2§ — 1246249428487, 75 + 4810752x, rg7y — 28347840007, 7o+
531322208048001, + 65318413 — 127203656023 + 8065264482367, —

65214125475 — ZLIG5TI210081(5 + 3990637800z5)

16{27436T05672002; — BAN551A288T, 75 + 2085084z, 7} — 1471426561, 75+
2488327, 792y + 20324047625 — 1724346138850 + 3409273 - 3317761205~
6801278425 + 4T6T1T127302)

where f = (6718464x,x] — 13403335680x,x3 + 9859389455232x,x, — 89579520x,x,x; — 2546440283980800x,

54170731584x, x; ~ 30233088x3 +
61336247328x,).

8.3. Minimum Bandwidth Operators

57302681472x3 + 99512064x,x, — 37301376049344x, + 8301045567048625

63

The parameters can be used to minimize the bandwidth of the difference operators. In the case of full norms we have
two parameters, and we can choose g, s =g, 5= 0 to mintmize the bandwidth. This gives a non-linear system of equations
with two solutions, one corresponding to an indefinite norm. The other solution gives the positive definite norm

584/110/1-5
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Shoo= —(~263779327 + 582347 /7 . /24943)/20736
fho, =(—85294475 + 209367 /7 \/24943)/2304
fho = —T(— 39830729 + 96637 /7 /24943)/6912
o =T(—49913119 + 118955 /7 ,/34943)/20736
fhy o= (—85294475 + 209367 /7 . /24943)/2304
[y = —(—68373221 + 156329 /7 . /24943)/768
Thi 2= (—T73504403 + 177871 \/7 \/24943)/768

fhy 5= ~(—91953365 + 219321 /7 . /24943)/2304
Tha o= —7(— 39830729 + 96637 /7 /249436912
fha =(~T73504403 + 177871 /7 . /24943)/768
fhyp= —(—207379375 + 483131 /7 ,/24943)/2304
fhy 5 =(—253102241 + 610693 /7 | /24943)/6912
Shs=T(~49913119 + 118955 /7 . /24943)/20736
fhy = —(--91953365 + 219321 /7 , /74043)/2304
fhy=(—253102241 + 610693 /7 . /24943)/6912
fly 3= —(—220497151 + 311435 /7 /24943)/20736,

where f = —2716 +17 /7 . /24943. In decimal form

0.2247105 (0.2166550 —0.1267943 ~0.01596010

0.2166550 09053611 0.2432041 003061306
—0.1267943 02432041  0.5442500 0.06850688
—Q.01596010 003061306 (0.06850688 05932290

The cigenvalues of H are
10837, 09690, 05382, 00766.

To this positive definite matrix the corresponding boundary operator with minimized bandwidth is

Fido.o= —(—44534043 + 105337 /7 ./24943)/6
fiGo. =(— 12112595 + 28577 /7 /24943)
fido2= —3(—4000241 + 9355 /7 \/24943)/2
fido=(— 3888369 + 8843 /7 /24943)/3

fido.s=32—437 +2. /7 /24943)

gos=0;

fogro= —(—2322245967111 + 5556025261 /7 /24943)/3

Fa,1 = —T(—T52572077947 + 1798259497 /7 . /24943)/6

f291..=(— 1858955051919 + 4443227269 /7 , /24943)

f291.3= —5(~ 186474644307 + 443526257 . /7 . /24943)/6

f241..= —8(— 19303788133 + 46366583 /7 , /24943)/3
g5=0;
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faz.o=(—45425453907169 + 108756928139 , /7 ,/24943)/90
Frza = —(—125808978873263 + 301133010757 . /7 . /24943)/45
fodz 2 =(—21614189741851 + 51772725129 . /7 . /24943)/10
fadas= —7(— 1134888541649 + 2748754651 /7 /24943)/45
f242.4=8(—2027181750139 + 4857666461 /7 /24943)/45
f1gqs= —2(—98399 4 247 /7 . /24943)/15;

frs0=—(—931273 + 2263 /7, /24943)/15
f38s,) ={(—9235079 + 22021 /7 \/24943)/30
f3gs.2= —129(~-30989 + 71 /7 ,/24943)/5
frgs,3={(—9653609 + 23411 /7 \/24943)/30
S3qs.0= 2 —2002441 + 4049 /7 | /24943)/15
fis.s= —2(—875354179 . /7 . /24943)/5,

where

fi= —4056177 + 9611 /7 /24943

Sy = —2167815662047 + 5185092597 ﬁ A/ 24943

fi=—567063 + 1213 /7 /24943,

Since g, 4 # 0, the difference stencil corresponding to the first point will need four neighbors to the right. The rest of the
points will need three or less neighbors to the ieft and/or to the right. When using paraliel computers we have to store the
main diagonal and four superdiagonals. Thus we have the same number of diagonals as for the operators corresponding
to the diagonal norms.

In the case of restricted full norms we choose the parameters such that g 4, ¢,.6, 92,6 are zeroed. As for the full norm
case this leads to a non-linear system of equations with two solutions, with one root corresponding to a positive definite
norm and one corresponding to an indefinite norm. The first solution then gives the following positive definite norm

ho.o=i3Ta ho.i=0s ho,z"—'o, ho,3=0, ho.=0;

hio=0
fhy, = (299913292801 + 56278767 /26116897)/228096
fhy 2= —(64756272879 + 310129 . /26116897)/76032
fhy 5= —( 50615837729 + 5284177 /26116897)/76032
La=(—5026701941 + 948741 . /26116897)/20736;

By0=0
Fhy = — (64756272879 + 310129 . /26116897)/76032
fh, = —7(—6989673895 + 13527 . /26116897)/25344
fhy 3 =49(— 657605303 + 100423  /26116897)/25344
fhy o= —49( —75022899 + 14467 . /26116897)/6912;
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hyo=0

fhy = —(—50615837729 + 5284177 . /26116897)/76032
Thy 2 =49(— 657605303 + 100423 . /26116897)/25344
fhy = —( 45333081425 + 982369  /26116897)/25344
fhy,4={—3355209517 + 597005 . /26116897)/6912;

fap=0
Jhy  =1{—5026701941 + 948741 , /26116897)/20736
Shy o= —49( 75022899 + 14467 . /26116897}/6912

Jha3=(—3355209517 + 597005 ,/26116897)/6912
TRy =5(35213725709 + 5139171 . /26116897)/228096,

where /= 591223 4+ 146 . /26116897. In decimal form

02727273 0 0 0 0
0 1926028 —0.6524409 02322075  —0.00642559!
H= 0 —0.6524409 1.429281 —0.2087529 0005776559
0 0.2322075 ~—0.2087529 1.189382 —0.03291229
0 —0.006425591  0.005776559 —0.03291229 1.007677

The eigenvalues of H are
02727, 24520, 1.1308, 1.0019, 0.9676.

To this positive definite matrix the corresponding boundary operator with minimized bandwidth is

‘I&o""“?‘: go,1=3, ‘?0,2:‘%a do,3=

i—

Fo.4=0, Gos=0 gos=0

S1q10= —24(—~779042810827742869 + 104535124033147 . /26116897)
fra11= —{ —176530817412806109689 + 29768274816875927 , /26116897)/6
Frqu.2=343(—171079116122226871 + 2797563046264 . /26116897)
figrs= —3(—T7475554291248533227 + 1648464218793925  /26116897)/2
fiqr.a=(—2383792768180030915 + 1179620587812973 . /26116897)/3
figr.s= —1232(—115724529581315 + 37280576429 . /26116897)

g1.6=0;

faqro= — 12(~— 380966843 + 86315 . /26116897)

f2g2 = (5024933015 + 2010631 ,/26116897);3

fodar= —231( 431968921 + 86711 ,/26116897)/2

fotns={—65931742559 + 12256337 . /26116897)

fadaa= —(— 50597298167 + 9716873 | /26116897)/6

f2d2,s= —88(— 15453061 +2911 /26116897)
d26=0
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F1d5.0=48(~ 56020909845192541 + 9790180507043 ,/26116897)

F183.0 = (—991824904923758601 1 + 1463702013196501 /26116897)/6
fids.2= —13(—4130451756851441723 + 664278707201077 /26116897)
f1,5=3(— 2693710846 7782666617 + 5169063172799767 /26116897)/2
f145.4 = —(6548308508012371315 + 3968886380989379 . /26116897)/3
f145.5 = 88(—91337851897923397 + 19696768305507 /26116897)
f3qs.6=242(— 120683 + 15 /26116897);

f1Gs.0=264(— 120683 + 15 ./26116897)
f3qan=(—43118111 + 23357 . /26116897)/3
fogsr= —47(~28770085 +2259 ,/26116897)/2
Figa2= —3(1003619433 + 11777 . /26116897)
fadas=—11(~— 384168269 + 65747 ,/26116897)/6
frdas=22(87290207 + 10221 . /26116897)
frdas= —66(3692405 + 419 , /26116897),

where

fi1= —56764003702447356523 + 8154993476273221 , /26116897
fy = —55804550303 + 9650225 , /26116897
J3=3262210757 + 271861 ./26116897.
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